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Abstract

The Candecomp/Parafac (CP) method decomposes a real-valued three-way array into a pre-
specified number R of rank-1 arrays, by minimizing the sum of squares of the residual array. The
practical use of CP is sometimes hampered by the occurrence of so-called degenerate solutions,
in which several rank-1 arrays are highly correlated in all three modes and some elements of the
rank-1 arrays become arbitrarily large. We consider the CP decomposition of 5 × 3 × 3 arrays
of three-way rank 6 or higher, with the number of components R equal to 5. We show that the
CP objective function may not have a minimum but an infimum. In such cases, any sequence
of feasible CP solutions of which the objective value approaches the infimum, will become de-
generate. We illustrate this result by means of simulations.
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1 Introduction

Carroll and Chang [1] and Harshman [2] independently proposed the same method for component
analysis of three-way arrays, and named it Candecomp and Parafac, respectively. In the sequel, we
will denote column vectors as x, matrices as X and three-way arrays as X. Unless stated otherwise,
we assume all vectors, matrices and three-way arrays to be real-valued. Candecomp/Parafac (CP)
decomposes an I × J ×K array X into a prespecified number of R components Y(r), r = 1, . . . , R,
and a residual term E, all of the same order as X, i.e.

X =
R∑
r=1

Y(r) + E . (1.1)

Each component Y(r) is defined as the outer product of three vectors a(r), b(r) and c(r), i.e.
y

(r)
ijk = a

(r)
i b

(r)
j c

(r)
k . For fixed R, the CP decomposition (1.1) is found by minimizing the sum of

squares of E.
The three-way rank of X is defined as the smallest number of rank-1 arrays whose sum equals

X. A three-way array has rank 1 if it is the outer product of three vectors. Hence, the concept of
rank is the same for matrices and three-way arrays. Notice that, in the CP decomposition (1.1),
each of the R components Y(r) has rank 1. The three-way rank of X is equal to the smallest
number of components for which full CP decomposition exists, i.e. with an all-zero residual term
E.

A CP solution is usually expressed in terms of the component matrices A (I × R), B (J × R)
and C (K × R), which have as columns the vectors a(r), b(r) and c(r), respectively. Let the k-th
slices of X and E be denoted by Xk (I×J) and Ek (I×J), respectively. Then (1.1) can be written
as

Xk = A Ck BT + Ek , k = 1, . . .K , (1.2)

where Ck is the diagonal matrix with the k-th row of C as its diagonal.
The uniqueness of a CP solution (A,B,C) is usually studied for given residuals E. The fitted

part of a CP decomposition, i.e.
∑R

r=1 Y(r), can only be unique up to rescaling/counterscaling and
jointly permuting columns of A, B and C. Indeed, the residuals will be the same for the solution
given by A = A Π Ta, B = B Π Tb and C = C Π Tc, for a permutation matrix Π and diagonal
matrices Ta, Tb and Tc with Ta Tb Tc = IR. When, for given residuals, the CP solution (A,B,C)
is unique up to these indeterminacies, it is called essentially unique. The scaling indeterminacy
can be avoided by norming the columns of two component matrices at unit length (in this way,
the diagonal elements of the corresponding diagonal matrices Tx are only allowed to be −1 or 1).
When these constraints have been imposed, we label each component matrix as either restricted
(of which there are two) or unrestricted (of which there is one).

Kruskal [4] has shown that essential uniqueness of the CP solution holds under relatively mild
conditions. Kruskal’s condition relies on a particular concept of matrix rank that he introduced,
which has been named k-rank after him. Specifically, the k-rank of a matrix is the largest number
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x such that every subset of x columns of the matrix is linearly independent. We denote the k-rank
of a matrix A as kA. For a CP solution (A,B,C), Kruskal [4] proved that

kA + kB + kC ≥ 2R+ 2 , (1.3)

is a sufficient condition for essential uniqueness. In practice, the value of R is usually small enough
to satisfy (1.3). This uniqueness property of CP is one of its most attractive features.

The practical use of CP, however, has been hampered by the occurrence of so-called degenerate
solutions. In the majority of such cases, exactly two components, say Y(s) and Y(t), of the solution
display the following pattern:

• In all three component matrices, the columns s and t are almost exactly equal up to a sign
change, the product of these sign changes being −1.

• The magnitudes of the elements of columns s and t in the unrestricted component matrix
become arbitrarily large.

This pattern is called a two-factor degeneracy, see Kruskal, Harshman and Lundy [5]. The con-
tributions of Y(s) and Y(t) diverge in nearly opposite directions. However, their sum Y(s) + Y(t)

still contributes to a better fit of the CP decomposition. It is clear that such CP solutions are
impossible to interpret and should be avoided, if possible.

Analogous to two-factor degeneracies, also three-factor degeneracies have been encountered, for
which holds that:

• In all three component matrices, any two of the columns s, t and u are almost exactly equal
up to a multiplicative constant. The product of these constants may be positive or negative.
In the restricted component matrices, columns s, t and u are almost equal up to a sign change.

• The magnitudes of the elements of columns s, t and u in the unrestricted component matrix
become arbitrarily large.

For an example of a three-factor degeneracy, see Stegeman [7]. Also degeneracies involving four or
five components have been encountered. Kruskal et al. [5] have argued that degenerate solutions
occur due to the fact that the CP objective function has no minimum, but an infimum. They reason
that every sequence of CP solutions of which the objective value is approaching the infimum, must
fail to converge and displays the pattern of degeneracy as stated above. Stegeman [7] has proven
this statement for CP decompositions of p × p × 2 arrays of rank p + 1 or higher, with R = p. In
particular, the main result of Stegeman [7] is the following. Let Rp denote the set of real-valued
p× p× 2 arrays of which the first slice is invertible, i.e.

Rp = {Y : p× p× 2 such that Y−1
1 exists} . (1.4)
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Theorem 1.1 Let X be a real-valued p × p × 2 array with p × p slices X1 and X2. Suppose that
X−1

1 exists. If the rank of X is p+ 1 or higher, then:

• the CP objective function of the best approximation of X by rank-p arrays in Rp does not
have a minimum, but an infimum, and

• any sequence of rank-p arrays in Rp of which the objective value approaches the infimum, will
become degenerate. 2

In this paper, we use the tools developed in Stegeman [7] to prove the analogue of Theorem 1.1 for
5×3×3 arrays of rank 6 or higher. In Section 2, a sketch of the proof of Theorem 1.1 is presented,
using a rank criterion for p × p × 2 arrays based on the eigendecomposition of X2X−1

1 . A similar
rank criterion for 5× 3× 3 arrays is due to Ten Berge [10]. In Section 3, Ten Berge’s rank criterion
is presented and elaborated upon. Our analogue of Theorem 1.1 is proven in Section 4, using Ten
Berge’s rank criterion. Finally, Section 5 contains the results of rank-5 approximations to random
5× 3× 3 arrays of rank 6. They show what type of degenerate CP solutions may be encountered
in this context.

2 A sketch of the proof of Theorem 1.1

To explain the similarity between Theorem 1.1 and our main result for 5× 3× 3 arrays, we give a
brief sketch of the proof of Theorem 1.1. We need the rank criterium for p × p × 2 arrays, which
can be found in Ja’ Ja’ [3]; see also Ten Berge [8].

Lemma 2.1 Let X be a real-valued p×p× 2 array with p×p slices X1 and X2. Suppose that X−1
1

exists. There holds:

(i) If X2X−1
1 has p real eigenvalues and p linearly dependent eigenvectors, then X has rank p.

(ii) If X2X−1
1 has at least one pair of complex eigenvalues then X has rank p+ 1 or higher.

(iii) If X2X−1
1 has p real eigenvalues but less than p linearly independent eigenvectors, then X has

rank p+ 1 or higher. 2

Ja’ Ja’ [3] has shown that the rank of a real-valued p× p× 2 array is at most p+ floor(p/2), where
the upper bound can be attained. Let X be as in Theorem 1.1. Then it satisfies either (ii) or (iii)
of Lemma 2.1. We need to solve the following optimization problem:

Minimize ‖X−Y‖2 (2.1)

subject to Y ∈ Dp ,

where ‖.‖ denotes the Frobenius norm and Dp is the set of p× p× 2 arrays in Rp, which have rank
p or less, i.e.

Dp = {Y ∈ Rp : Y2Y−1
1 has p real eigenvalues and p linearly independent eigenvectors} . (2.2)
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We will consider Dp, and other subsets of the space of real-valued p × p × 2 arrays, as subsets of
<2p2

. Next, consider the optimization problem

Minimize ‖X−Y‖2 (2.3)

subject to Y ∈ Dp ,

where Dp is the closure of Dp in Rp, i.e. the union of Dp and its boundary points in Rp. Since Dp
is closed and X /∈ Dp, the objective function in (2.3) has a minimum. Any optimal solution X̃ of
(2.3) is a boundary point of Dp.

There holds that the boundary Dp is formed by p × p × 2 arrays Y for which Y2Y−1
1 has p

real eigenvalues but is not diagonalizable (and a lower dimensional subset which is immaterial in
practice). Since such arrays do not have a full rank-p decomposition, they do not lie in Dp and,
hence, the set Dp is open. Since X does not lie in Dp, this implies that the CP objective function in
(2.1) has no minimum, but an infimum. If X satisfies (iii), then it is a boundary point of Dp and
the CP objective function in (2.1) has an infimum of 0. If X satisfies (ii), then the CP objective
function in (2.1) has an infimum of ‖X− X̃‖2, where X̃ is an optimal solution of (2.3). This proves
the first statement of Theorem 1.1.

It remains to show that any sequence of CP solutions approaching the infimum, becomes de-
generate. For any Y ∈ Dp, the matrix Y2Y−1

1 has an eigendecomposition K Λ K−1, where the
diagonal matrix Λ contains the eigenvalues and K has the associated eigenvectors as columns.
It can be shown that a CP decomposition (1.2) of Y ∈ Dp is necessarily of the form A = K,
BT = K−1Y1, C1 = Ip and C2 = Λ. Suppose (ii) holds. Any sequence of arrays Y ∈ Dp of which
the CP objective value in (2.1) approaching the infimum, will converge to an optimal solution X̃ of
problem (2.3). Hence, Y2Y−1

1 will converge to X̃2X̃−1
1 . Since X̃ satisfies (iii), the following holds

for the eigendecomposition of Y2Y−1
1 : the matrix K will converge to a singular matrix and Λ will

converge to a matrix with not all diagonal elements distinct. If we assume that A and C are the
restricted component matrices, we obtain the following for the CP decomposition of Y: matrices
A and C will converge to matrices in which some columns are equal up to a sign change, and the
elements of the corresponding columns of B will become arbitrarily large. Hence, the sequence of
CP solutions indeed becomes degenerate. If (iii) holds, the same line of reasoning can be used with
X̃ replaced by X itself. This proves the second statement of Theorem 1.1.

The degenerate CP solutions in Theorem 1.1 are caused by the fact that the best approxima-
tion Y2Y−1

1 of X2X−1
1 is not diagonalizable. In case (ii), the characteristic polynomial of X2X−1

1

has at least one pair of complex roots and is approximated by characteristic polynomials of the
same degree, which have only real roots. Such approximations may play a role in the occurrence of
degenerate CP solutions in general. We will show that this is indeed the case for 5× 3× 3 arrays,
using a rank criterion similar to Lemma 2.1, which is due to Ten Berge [10]. In the next section,
Ten Berge’s rank criterion is presented.
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3 A polynomial rank criterion for 5× 3× 3 arrays

Here, we present a rank criterion for 5× 3× 3 arrays due to Ten Berge [10], which is an analogue
of Lemma 2.1. We give a summary of Ten Berge’s analysis and extend it to suit our purposes.

Sometimes, we will refer to the situation where 5× 3× 3 arrays are randomly sampled from a
45-dimensional continuous distribution. More formally, we assume the following in this case.

(A1) The 5× 3× 3 array X is randomly sampled from a 45-dimensional continuous distribution F
with F (S) = 0 if and only if L(S) = 0, where L denotes the Lebesgue measure ans S is an
arbitrary Borel set in <45.

Notice that the requirement on F guarantees that F (S) = 0 if and only if the set S has dimen-
sionality lower than 45. If the sequel, we will say that some property of 5 × 3 × 3 arrays holds
“with probablity 1”. This means that the set of arrays for which the property does not hold, has
dimensionality lower than 45. Analogously, a property holds “with probability zero” if the set of
arrays for which the property holds has dimensionality lower than 45. For example, under (A1),
each of the 5× 3 slices X1, X2 and X3 has rank 3 with probability 1 and X has three-way rank 1
with probability zero.

Ten Berge [10] has proven that, under (A1), 5 × 3 × 3 arrays have a three-way rank of 5 or 6
with probability 1, where both rank values occur with positive probability. To arrive at this result,
Ten Berge developed a rank criterion for 5 × 3 × 3 arrays involving a seventh degree polynomial
P , the coefficients of which are functions of the elements of the array. If P has seven distinct real
roots, then the array has rank 5, and if P has at least one pair of complex roots, then the array
has rank 6 or higher. A summary of the analysis of Ten Berge [10] is as follows.

Ten Berge and Kiers [9] have shown that, with probability 1, there exist nonsingular matrices
S (5× 5) and T (3× 3) such that

STX1 T = Z1 =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 , STX2 T = Z2 =


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 , STX3 T = Z3 , (3.1)

where, under (A1), the last slice can be treated as randomly sampled from a 15-dimensional con-
tinuous distribution. The matrix S is obtained as

Vec(S) =
[
I25 −V(VTV)+VT

]
Vec(I5) , (3.2)

where (VTV)+ denotes the Moore-Penrose inverse of VTV and

V = [I5 ⊗X2 |O]− [O | I5 ⊗X1] , (3.3)

with ⊗ denoting the Kronecker product and O denoting an all-zero matrix of order 25 × 6. The
matrix T is then obtained as

T = (XT
1 S STX1)−1XT

1 S Z1 . (3.4)
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The transformation in (3.1) is rank-preserving and simplifies the analysis. In the remaining part of
this section, we consider only transformed arrays Z of the form (3.1). Notice that, since the rank
of the matrix [Z1 |Z2 |Z3] equals 5, the three-way rank of Z is at least 5. Next, we determine for
which arrays Z a rank-5 CP decomposition is possible.

First, we assume that a rank-5 CP decomposition (A,B,C) exists in which the first row of the
component matrix C does not contain any zeros. The CP decomposition in the form of (1.2) can
be written as

Z1 = A I5 BT , Z2 = A C̃ BT , Z3 = A D̃ BT , (3.5)

where A is 5 × 5, B is 3 × 5 and C̃ and D̃ are 5 × 5 diagonal matrices containing, respectively,
the second and third row of C as diagonal elements. Note that the elements of the first row of C
have been set to 1 (this is possible due to the scaling indeterminacy of CP and because the first
row of C does not contain any zeros). It follows from (3.5) that the columns of Z1 and Z2 lie in
the column space of A. Therefore, A must have rank 5 and its inverse exists. We have

A−1Z1 = BT , A−1Z2 = C̃ BT , A−1Z3 = D̃ BT , (3.6)

which yields
C̃ A−1Z1 −A−1Z2 = D̃ A−1Z1 −A−1Z3 = O . (3.7)

From (3.7), we determine A, C̃ and D̃. The matrix B can then be obtained from BT = A−1Z1. Let
aTj denote row j of A−1. Then we need to determine five linearly independent solutions to the vector
equation aTj (cj Z1 − Z2) = aTj (dj Z1 − Z3) = 0T , where cj and dj are the j-th diagonal elements
of C̃ and D̃, respectively, and 0 denotes the all-zero vector. Without loss of generality we set the
first element of aj to 1. From the form of Z1 and Z2, see (3.1), it follows that aTj (cj Z1−Z2) = 0T

is equivalent to
aTj = (1 ej cj cjej c2

j ) , (3.8)

for some scalar ej . Let Z3 = [f |g |h]. It remains to satisfy aTj (dj Z1 − Z3) = 0T . It can be seen
that this is equivalent to the vector (1 ej)T being orthogonal to the columns of

Wj =

[
c2
jf5 + cjf3 + f1 − dj c2

jg5 + cjg3 + g1 c2
jh5 + cj(h3 − dj) + h1

cjf4 + f2 cjg4 + g2 − dj cjh4 + h2

]
. (3.9)

To get such an ej , the matrix Wj needs to have rank 1. Hence, we demand that the submatrix
of columns 1 and 2 and that of columns 1 and 3 have determinant zero. However, this is not
enough. We have to make sure that column 1 is not all-zero, which is the case for cj = −f2/f4 and
dj = c2

jf5 + cjf3 + f1. The proportionality of columns 1 and 3 yields

(c2
jf5+cjf3+f1)(cjh4+h2)−(cjf4+f2)(c2

jh5+cjh3+h1)−dj(cjh4+h2)+dj(c2
jf4+cjf2) = 0 , (3.10)

from which dj can be solved explicitly. When this solution for dj is inserted in the equation for the
proportionality of columns 1 and 2, we obtain

P (cj) = z7c
7
j + z6c

6
j + z5c

5
j + z4c

4
j + z3c

3
j + z2c

2
j + z1cj + z0 = 0 , (3.11)
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where the coeffcients zj , which are functions of f , g and h, are given in the Appendix of Ten
Berge [10]. The seventh degree polynomial P in (3.11) has one root −f2/f4 and six other roots,
which we denote as λ1, . . . , λ6. If these six roots are real, then five of them can be used as cj and
the corresponding dj follows from (3.10). Moreover, if five different real roots are picked, then
(3.8) guarantees five linearly independent rows of A−1 and a rank-5 decomposition is possible. If
λ1, . . . , λ6 are real and different, then six different rank-5 decomposisitons are possible in this way.
Note that the polynomial P has all roots different with probability 1 and all roots real with positive
probability. Also, complex roots of P occur with positive probability.

Next, we present an extension to the analysis in Ten Berge [10]. We would like to state that
if P has at least one pair of complex roots, then a rank-5 decomposition is not possible. However,
we only know that a rank-5 decomposition with no zeros in the first row of C is not possible then.
Therefore, we also consider the possibility of having one or two zeros in the first row of C. Notice
that three or more zeros in the first row of C is not possible since Z1 in (3.5) has rank 3.

First, we set the first row of C to (0 1 1 1 1) and see if a rank-5 decomposition is possible.
Instead of A−1Z1 = BT , we then have

A−1Z1 =


0T

bT2
...

bT5

 , (3.12)

where bj denotes the j-th column of B. The equations aTj (cj Z1−Z2) = aTj (dj Z1−Z3) = 0T now
only need to hold for j = 2, 3, 4, 5. Hence, for c2, . . . , c5 we need to have four different real roots
of P among λ1, . . . , λ6. Then the corresponding dj and aj follow, as before, from (3.10) and (3.8),
respectively. For the first columns of the component matrices, there must hold

aT1 Z1 = 0T , aT1 Z2 = c1 bT1 , aT1 Z3 = d1 bT1 . (3.13)

It can be verified that (3.13) yields aT1 = (0 0 0 x y), where x and y have to satisfy f4 f5

c1g4 − d1 c1g5

c1h4 c1h5 − d1

 ( x

y

)
=

 0
0
0

 . (3.14)

The matrix in (3.14) must have rank 1. For nonzero f4 and f5, this implies that

g4f5 − f4g5

f5
=
f4h5 − h4f5

f4
. (3.15)

If (3.15) holds and

d1 =
c1(f4h5 − h4f5)

f4
, (3.16)

where c1 can be set to 1, then the matrix in (3.14) has rank 1. When a1, c1 and d1 are known, b1

can be determined from (3.13). Since we only need four different real roots among λ1, . . . , λ6 to
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construct a rank-5 decomposition, one may wonder whether P can have one pair of complex roots
in this case. It turns out that the answer is no. The reason is that (3.15) is equivalent to the leading
coefficient z7 of P being equal to zero. Hence, in this case P is a sixth degree polynomial with
one root −f2/f4, four different real roots and one other root, which is necessarily real. If P has
five different real roots, besides −f2/f4, then five different rank-5 decompositions are possible with
the first row of C equal to (0 1 1 1 1). Notice that the requirement (3.15) implies that arrays
permitting such a rank-5 decomposition occur with probability zero under the sampling regime
(A1).

Next, we set the first row of C equal to (0 0 1 1 1) and examine under which conditions a
rank-5 decomposition is possible. Instead of (3.12), we now have

A−1Z1 =


0T

0T

bT3
bT4
bT5

 . (3.17)

The equations aTj (cj Z1 − Z2) = aTj (dj Z1 − Z3) = 0T only need to hold for j = 3, 4, 5. Hence, we
need to have three different real roots among λ1, . . . , λ6 to use as c3, c4, c5. The corresponding dj
and aj are obtained as before. The equations for the first columns of A, B and C are (3.13) as
above. Analogously, the second columns of the component matrices need to satisfy

aT2 Z1 = 0T , aT2 Z2 = c2 bT2 , aT2 Z3 = d2 bT2 . (3.18)

Again, aT1 = (0 0 0 x y), where x and y have to satisfy (3.14). But also aT2 = (0 0 0 v w),
where v and w have to satisfy f4 f5

c2g4 − d2 c2g5

c2h4 c2h5 − d2

 ( v

w

)
=

 0
0
0

 . (3.19)

Since both (x y)T and (v w)T need to be orthogonal to (f4 f5)T , they are linearly dependent
unless f4 = f5 = 0. If the latter is not the case, then a1 and a2 are linearly dependent and a rank-5
decomposition does not exist. Hence, f4 = f5 = 0 has to hold. Under this condition, the matrices
in (3.14) and (3.19) have rank 1 if

(g4h5)c2
j − (g4 + h5)cjdj + (g5 − h4)cj + d2

j = 0 , j = 1, 2 . (3.20)

Hence, we need a real solution (c1, c2, d1, d2) to (3.20). Then (x y)T and (v w)T follow from
(3.14) and (3.19), respectively. The columns b1 and b2 can be determined from (3.13) and (3.18),
respectively. This time, we only need three different real roots among λ1, . . . , λ6 to construct a
rank-5 decomposition. However, the constraint f4 = f5 = 0 yields that the coefficients z7, z6 and
z5 of the polynomial P are zero. Hence, P is a fourth degree polynomial with one root −f2/f4 and
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three other roots, which need to be real and distinct in order to obtain a rank-5 decomposition
with the first row of C equal to (0 0 1 1 1). Also in this case, P cannot have any complex roots
if a rank-5 decomposition is possible. Notice that, as above, a rank-5 solution with the first row of
C equal to (0 0 1 1 1) is possible with probability zero under the sampling regime (A1).

The analysis above results in the following analogue of Lemma 2.1.

Lemma 3.1 Let X be a 5× 3× 3 array for which the matrices S in (3.2) and T in (3.4) are both
nonsingular. Then the transformation to the form (3.1) is possible. Assume the polynomial P in
(3.11) has degree seven and roots −f2/f4 and λ1, . . . , λ6. There holds:

(i) If there are five distinct real roots among λ1, . . . , λ6, then X has rank 5.

(ii) If there is at least one pair of complex roots among λ1, . . . , λ6, then X has rank 6 or higher.

(iii) If the roots λ1, . . . , λ6 are real, but (i) does not hold, then X has rank 6 or higher. 2

Recall that, under (A1), the matrices S and T are nonsingular with probability 1 and P has degree
seven with probability 1. In Lemma 3.1, cases (i) and (ii) occur with positive probability, while
(iii) occurs with probability zero. Analogous to Lemma 2.1, the rank of X depends on whether the
roots of a unique polynomial associated with the array are real or complex. The coeffcients of the
polynomial are functions of the elements of the array.

4 Degenerate CP solutions for 5× 3× 3 arrays of rank 6 or higher

When a 5 × 3 × 3 array of rank 6 (or higher) is decomposed in CP with R = 5 components, the
solution often becomes degenerate. Here, we show why and how that happens. We consider the
following set of 5× 3× 3 arrays:

R = {Y : S in (3.2) and T in (3.4) are nonsingular, and P in (3.11) has degree seven } . (4.1)

Note that the restriction to arrays in the set R is only virtual. This can be seen as follows.
Under (A1), any array lies in R with probability 1. This implies that any array not in R can be
approximated arbitrarily close by arrays in R. Indeed, if X /∈ R, then the set

B(X, ε) = {Y : ‖X−Y‖2 < ε} , (4.2)

has positive Lebesgue measure (i.e. positive 45-dimensional volume) for any ε > 0. Under (A1),
this is equivalent to the set B(X, ε) having positive probability. Since the set R has probability 1,
the set B(X, ε) contains an array which lies in R. Hence, for any X /∈ R and any ε > 0, there exists
an Y ∈ R such that ‖X−Y‖2 < ε. Although we cannot consider any CP algorithm as a generator
of random arrays, we can safely assume, based on the observations above and the results from our
simulations in the next section, that CP solutions not lying in the set R will not be encountered
in practice.
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Recall that the polynomial P in (3.11) has roots −f2/f4 and λ1, . . . , λ6. We define the following
subsets of R in (4.1). Let

S = {Y ∈ R : P in (3.11) has seven real roots} , (4.3)

and
D = {Y ∈ R : P in (3.11) has six distinct real roots λ1, . . . , λ6} . (4.4)

It is clear that D ⊂ S ⊂ R. Since the roots of P are continuous functions of the elements of the
array, it follows that D is an open subset of S, which is a closed subset of R. Moreover, any array
in S\D can be approximated arbitrarily close by arrays in D. Hence, the interior of S equals the
set D and S is the closure of D in R. By Lemma 3.1, all arrays in D have rank 5. The arrays in
S\D may have rank 5 or rank 6 or higher. All arrays in R\S have rank 6 or higher.

We consider a 5× 3× 3 array X ∈ R, which has rank 6 or higher. Hence, X satisfies either (ii)
or (iii) of Lemma 3.1. We approximate X by rank-5 arrays in R. Any rank-5 array in R either lies
in D or in S\D. Therefore, we consider the following optimization problems:

Minimize ‖X−Y‖2 (4.5)

subject to Y ∈ D ,

and

Minimize ‖X−Y‖2 (4.6)

subject to Y ∈ S .

It is clear that if an optimal solution of problem (4.6) has rank 5, then this is also a best rank-5
approximation (in R) of X. Our main result is the following, which is the analogue of Theorem 1.1.

Theorem 4.1 Let X be a real-valued 5× 3× 3 array which lies in R and has rank 6 or higher. If
all optimal solutions of problem (4.6) have rank 6 or higher, then:

• the CP objective function of the best approximation of X by rank-5 arrays in R does not have
a minimum, but an infimum, and

• any sequence of rank-5 arrays in R of which the objective value approaches the infimum, will
become degenerate. 2

The remaining part of this section contains the proof of Theorem 4.1. It will be seen that the
structure of the proof of Theorem 4.1 is similar to the proof of Theorem 1.1 described in Section 2.

Our proof of Theorem 4.1 is as follows. Suppose X satisfies (ii) of Lemma 3.1. Since S is
a closed subset of R and X /∈ S, it follows that any optimal solution of problem (4.6) will be a
boundary point of S. The assumption of Theorem 4.1 is that all optimal solutions of problem (4.6)
have rank 6 or higher. Since the interior of S equals D, this implies that the best approximation
of X by rank-5 arrays in R is obtained by solving problem (4.5).

11



From the above, we know that the objective value in (4.6) of any interior point of S can be
decreased. The interior of S equals D, which yields that, in problem (4.5), the objective value
of any feasible solution can be decreased. Hence, the objective function of problem (4.5) has no
minimum, but an infimum. The value of this infimum is equal to ‖X − X̃‖2 > 0, where X̃ is an
optimal solution of (4.6).

If X satisfies (iii) of Lemma 3.1, then X ∈ S\D can be approximated arbitrarily close by arrays
in D. Hence, the objective function of problem (4.5) has no minimum, but an infimum, and the
value of the infimum is zero. This proves the first statement of Theorem 4.1.

Next, we prove the second statement of Theorem 4.1. It is assumed that all optimal solutions
of problem (4.6) have rank 6 or higher, i.e. they satisfy (iii) of Lemma 3.1. From the observations
above, it follows that any sequence of feasible solutions to problem (4.5), of which the objective
value approaches the infimum, will approximate (arbitrarily close) a boundary point X̃ of S, which
is an optimal solution of problem (4.6). Since X̃ satisfies (iii) of Lemma 3.1, it has less than five
distinct roots among the real λ1, . . . , λ6 for its associated polynomial P .

Let (Yn) be a sequence of feasible solutions to problem (4.5), which converges to X̃. Since
Yn ∈ D for all n, the possible rank-5 decompositions for each Yn can be found as described in
Section 3. First, the array is transformed to the form (3.1), using matrices Sn in (3.2) and Tn

in (3.4). Any rank-5 decomposition (An,Bn,Cn) of the transformed array then yields a rank-5
decomposition of Yn of the form ((S−1

n )TAn, (T−1
n )TBn,Cn).

Since the sequence (Yn) converges to X̃, the corresponding polynomials Pn converge to the
polynomial P associated with X̃. This implies that the roots λ(n)

1 , . . . , λ
(n)
6 of Pn will converge to

the roots λ1, . . . , λ6 of P . Hence, for Yn close to X̃, some roots of Pn will become more and more
alike such that when any five of λ(n)

1 , . . . , λ
(n)
6 are picked, at least two of them are nearly identical.

In the lemma below, it is shown that this yields a degenerate rank-5 decomposition of Yn.

Lemma 4.2 Let X̃ be a boundary point of S which satisfies (iii) of Lemma 3.1. Let (Yn) be a
sequence of arrays in D, which converges to X̃. Consider five roots λ(n)

1 , . . . , λ
(n)
5 (not equal to

−f2/f4) of the polynomial Pn associated with Yn. For these roots, let (An,Bn,Cn) be a rank-5
decomposition of the transformed form (3.1) of Yn. Suppose the roots λ(n)

1 , . . . , λ
(n)
m , 2 ≤ m ≤ 5,

converge to λ and m is maximal. If matrices Bn and Cn are restricted to have columns of unit
lenght, then the following holds for (An,Bn,Cn) when (Yn) is close to X̃.

• The first m columns of Bn are almost exactly equal up to a sign change.

• The first m columns of Cn are almost exactly equal up to a sign change.

• The magnitudes of the elements of the first m columns of An become arbitrarily large, while
the sum of these m columns converges to a nonzero vector.

Proof. For the roots λ(n)
1 , . . . , λ

(n)
5 of the polynomial Pn associated with Yn, the rank-5 decom-

position (An,Bn,Cn) of the transformed form (3.1) of Yn is constructed as described in Section
3. From (3.8), it follows that the first m rows of A−1

n are nearly identical. From the restriction on

12



Bn and BT
n = A−1

n Y1, where Y1 is as in (3.1), it then follows that the first m columns of Bn are
almost exactly equal. Column j ≤ m of the unrestricted matrix Cn is of the form (1 λ

(n)
j d

(n)
j )T ,

where d(n)
j depends on λ(n)

j through (3.10) (replace cj in (3.10) by λ(n)
j ). Hence, it is clear that the

first m columns of the restricted matrix Cn will become almost exactly equal. The sign changes in
the first m columns of Bn and Cn occur due to the inherent scaling indeterminacy of CP.

It remains to consider the matrix An. The (i, j)-th element of An equals

a
(n)
ij =

(−1)i+j det(M(i,j)
n )

det(A−1
n )

, (4.7)

where M(i,j)
n is the 4 × 4 submatrix of A−1

n that is obtained by deleting row j and column i. For
j ≤ m, the submatrix M(i,j)

n contains m − 1 nearly identical rows. Since A−1
n contains m nearly

identical rows, det(A−1
n ) will converge to zero at a faster rate than det(M(i,j)

n ), when (Yn) converges
to X̃. Hence, the absolute value of a(n)

ij in (4.7) will become arbitrarily large for j ≤ m, when (Yn)

converges to X̃. For j > m, both the submatrix M(i,j)
n and A−1

n contain m nearly identical rows.
This implies that the value of a(n)

ij in (4.7) will converge to a nonzero constant when (Yn) converges
to X̃.

It remains to show that the sum of the first m columns of An converges to a nonzero vector. We
consider the i-th element of the said sum and assume i is odd. The proof for i even is completely
analogous. We introduce the following notation. Let A−1

n,i denote the submatrix of A−1
n obtained

by deleting column i. For m = 3 (for example), we use 1− 2
3
∗

 , (4.8)

to denote the 4 × 4 matrix which has: the first row equal to the difference between the first and
second row of A−1

n,i ; the second row equal to the third row of A−1
n,i ; and the last two rows equal to

the last two rows of A−1
n,i .

First, consider m = 2. We have

det(A−1
n ) (a(n)

i,1 + a
(n)
i,2 ) = det(M(i,1)

n )− det(M(i,2)
n )

= det

(
2
∗

)
− det

(
1
∗

)

= det

(
2− 1
∗

)
. (4.9)

It can be shown that the determinant in (4.9) converges to zero at the same rate as det(A−1
n ).

Hence, it follows that a(n)
i,1 + a

(n)
i,2 converges to a nonzero constant.

Next, consider m = 3. We have

det(A−1
n ) (a(n)

i,1 + a
(n)
i,2 + a

(n)
i,3 ) = det(M(i,1)

n )− det(M(i,2)
n ) + det(M(i,3)

n )
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= det

 2
3
∗

− det

 1
3
∗

+ det

 1
2
∗



= det

 2− 1
3
∗

− det

 2− 1
1
∗



= det

 2− 1
3− 1
∗

 . (4.10)

As before, it can be shown that the determinant in (4.10) converges to zero at the same rate as
det(A−1

n ). Hence, it follows that a(n)
i,1 + a

(n)
i,2 + a

(n)
i,3 converges to a nonzero constant. We omit the

proof for m = 4 and m = 5, since it is similar to the cases above. 2

As explained above, a rank-5 decomposition of Yn itself is of the form (STnAn,TT
nBn,Cn), where

Sn is as in (3.2) and Tn is as in (3.4). If (An,Bn,Cn) is degenerate as described in Lemma 4.2,
then this also holds for (STnAn,TT

nBn,Cn). Hereby, the second statement of Theorem 4.1 is proven.
From the proof of Theorem 4.1 above, it follows that the best rank-5 approximation (in R) of X

always results in degeneracy when all optimal solutions of problem (4.6) have rank 6 or higher. If an
optimal solution of problem (4.6) has rank 5, then its polynomial P has two identical roots among
λ1, . . . , λ6, and five distinct roots can be picked to form a nondegenerate rank-5 CP decomposition.
Notice that degeneracies may still occur in this case, due to picking the two roots which converge
to the same limit. However, the problem can be overcome by picking the right set of five roots.

Notice that a degenerate solution of the type described in Lemma 4.2 is equal to a two-factor
degeneracy for m = 2, but not to an m-factor degeneracy, as described in Section 1, for m ≥ 3.

5 Simulation results

Here, we illustrate the result of Theorem 4.1 by calculating the CP decomposition (with R = 5
components) of random 5 × 3 × 3 arrays of rank 6. For this, we use the Multilinear Engine by
Paatero [6].

Under (A1), random 5 × 3 × 3 arrays X of rank 6 have a polynomial P with at least one pair
of complex roots (with probability 1). We consider three categories of such arrays X, namely for
which P has two, four or six complex roots. We calculate the rank-5 approximation of 10 arrays
of each category. For each array X we use 10 different (random) starting values for the component
matrices A, B and C. After the algorithm terminates, we use the optimal component matrices for
each run to calculate the rank-5 arrays Y∗ closest to X. Since a 5× 3× 3 array of rank 5 has six
possible rank-5 decompositions, see Ten Berge [10] and Section 3, we focus on the optimal arrays
Y∗ rather than on the component matrices.
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pattern of nearly identical roots of P ∗

Category X 2 3 4 2+2 2+3 2+4 2+2+2

P has 2 complex roots 6 4 0 0 0 0 0

P has 4 complex roots 2 0 5 2 1 0 0

P has 6 complex roots 0 0 0 3 5 1 1

Table 1: Frequencies of different type of CP solutions resulting from rank-5 approximations of
random 5× 3× 3 arrays of rank 6. Of each category, 10 different arrays are considered.

In a majority of cases (254 out of 300) all 10 runs for one array X yield approximately the
same solution Y∗. In the other 46 cases the algorithm terminates with a suboptimal solution. We
discard the outcomes of these 46 runs and will speak of the CP solution Y∗ for a certain array X.
Notice that this indicates that, usually, problem (4.6) has a unique optimal solution X̃, which is
a bounday point of S. This X̃ is then approximated arbitrarily close (depending on the stopping
criterion of the CP algorithm) by arrays in D.

As we expected, all solution arrays Y∗ lie in R, i.e. the transformation (3.1) is possible and the
polynomial P ∗ associated with Y∗ has degree seven. All polynomials P ∗ have some nearly identical
roots, which is in agreement with our analysis in Section 4. If P ∗ has only two nearly identical
roots (apart from −f2/f4), then both nondegenerate and degenerate rank-5 decompositions of Y∗

are possible. This corresponds to the case where X̃ has rank 5. If P ∗ has more nearly identical
roots, then only degenerate rank-5 decompositions of Y∗ exist. This corresponds to the case where
X̃ has rank 6. For all degenerate solutions obtained, the component matrices display the pattern
described in Lemma 4.2.

In Table 1, the frequencies of the different types of solutions can be found for each category of
arrays X. If P ∗ has two nearly identical roots and a group of three other nearly identical roots,
this is denoted as type “2+3”. As can be seen, a variety of different types of solutions occur. In
cases where P ∗ has only two nearly identical roots, both nondegenerate and degenerate solutions
occur, where the latter occur about twice as often as the former.

It should be noted that degenerate CP solutions are an asymptotic phenomenon, i.e. a CP
solution “becomes more and more degenerate” as the CP algorithm runs longer. In some runs
(mostly for arrays X for which P has four or six complex roots), the convergence of the solution
array Y∗ to the (unknown) boundary point X̃ is very slow. In such cases, the type of solution (i.e.
the number of nearly identical roots of P ∗) is determined by extrapolation and the inspection of
the component matrices, where we use Lemma 4.2 in the latter case.

15



References

[1] J.D. Carroll and J.J. Chang (1970) Analysis of individual differences in multidimensional
scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283–
319.

[2] R.L. Harshman (1970) Foundations of the Parafac procedure: models and conditions for an
“explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1–84.

[3] J. Ja’ Ja’ (1979) Optimal evaluation of pairs of bilinear forms. SIAM Journal on Computing,
8, 443–462.

[4] J.B. Kruskal (1977) Three-way arrays: rank and uniqueness of trilinear decompositions,
with applications to arithmetic complexity and statistics. Linear Algebra and its Applications,
18, 95–138.

[5] J.B. Kruskal, R.A. Harshman and M.E. Lundy (1989) How 3-MFA data can cause
degenerate Parafac solutions, among other relationships. In: Multiway Data Analysis, R. Coppi
and S. Bolasco (editors), North-Holland, 115–121.

[6] P. Paatero (1999) The Multilinear Engine - a table-driven least squares program for solv-
ing multilinear problems, including the n-way Parafac model. Journal of Computational and
Graphical Statistics, 8, 1–35.

[7] A.W. Stegeman (2004) Degeneracy in Candecomp/Parafac explained for p× p× 2 arrays of
rank p+1 or higher. Technical Report, Heijmans Institute of Psychological Research, University
of Groningen, The Netherlands. Submitted

[8] J.M.F. Ten Berge (1991) Kruskal’s polynomial for 2× 2× 2 arrays and a generalization to
2× n× n arrays. Psychometrika, 56, 631–636.

[9] J.M.F. Ten Berge and H.A.L. Kiers (1999) Simplicity of core arrays in three-way principal
component analysis and the typical rank of p×q×2 arrays. Linear Algebra and its Applications,
294, 169–179.

[10] J.M.F. Ten Berge (2004) Partial uniqueness in Candecomp/Parafac. Journal of Chemomet-
rics, 18, 12–16.

16


